

Durco® Mark 3™ ISO MAG

Sealless, magnetic drive (ISO 2858, ISO 5199 and ISO 15783) with proven Durco Mark 3 features and reliability

- Low downtime and maintenance costs, owing to sealless design
- Improved environmental and personnel safety with hermetically sealed design
- Standardized modular system designed for flexible plant installation

Market Specifications							
Applications		Chemical and general industries					
Competition		Klaus Union, CP, KSB, ITT, Hermetic, Dickow					
Customers/End users		BASF, INEOS, Desmet Ballestra, Akzo Nobel, Cargill					
Technical Spec	ifications						
Series		CBMM (long coupled), CBME (closed coupled), CBME with heat barrier design					
	Flows to:	475 m³/h (2862 gpm)					
	Heads to:	150 m (492 ft)					
Range	Pressures to:	25 bar (362 psi)					
	Temperatures:	-40°C to 350°C (-40°F to 662°F) with heat barrier up to 400°C (752°F)					
	Sizes:	32 sizes with discharges from 25 to 150 mm (1 to 6 in)					

n = 2900 rpm

		20		30	4	0	60 81	100		200	1	300) 4	00	600	100		2	2000	30	00 US	gpm
			20		30		40 60	80 100		- 2	200		300) 4	00 600) '	1000		20	00	lm	p. gpm
	200	_		_	_	Т		Т	_	Т		П	_	Т	ı	_				_	7- 600	
																					-	
Н													ı	ı							- 400	Н
m	100	F	H	1	ŧ	F							Ŧ	ŧ						+	300	ft
		F	Н	\exists	Ŧ	F							H	Н					N	Ŧ	300	
	60			1	Ŧ	L							1	ļ						N	200	
	40	H	Н	+	+	H							+	H		+				4	-	
	30	H	Н	+	+	H						Н	+	H		+			4	+	100	
													ı	ı							- 80	
	20		П	1									ı	ı						T	- 60	
									V.			N	4	1			•				40	
	10	L		4	+				_	-	L	Н	4	1		+			\Box	+	30	
	8		Н	\exists	\pm	F				F		Н	\pm	Ŧ		\mp			\exists	\pm] ³⁰	
	6		□ 5 6	\perp	8	1	n	20 3	30 4	40	6	О 0	80	10	nn .	200	3(00 40		600	1 20	
		•		'	J		•	20 .		Q n			00	, 10	50	200	30	,	,,,	000	,	

Wet end materials	Cast iron, ductile cast iron, stainless steel				
Flanges	PN 16 to PN 25 or drilled per ASME (ANSI) Class 150 and 300				
Shaft	Non-drive shaft: duplex stainless steel or 316 stainless steel				
Power end	Ductile cast iron; open or closed lantern bracket design				
Bearings	Wetted bearings in SSiC; bearing insert 1.4462				
Magnets	Inner magnet: 1.4571 samarium cobalt Outer magnet: 1.0570 samarium cobalt				
Special configuration	Free flow filter, external flushing				
Design standards	ISO 5199, ISO 2858, EN 15783				
Test standards	ISO 9906				
Certificate/Approval	2.1/2.2/3.1 certificate, CE, ATEX				

Key Features and Benefits

Containment shells

Ceramic
No eddy current losses

Different options to cover best customer needs regarding safety or efficiency

	Containment Shell Construction								
	Alloy C-4	High- efficiency Alloy C-4	Ceramic						
Closed lantern bracket design — max. temp.	250°C (482°F)	180°C (356°F)	200°C (392°F)						
Open lantern bracket design — max. temp.	350°C (662°F)	180°C (356°F)	N/A						
ATEX	✓	✓	✓						
3.1 certificate	✓	✓	✓						
Pressure	PN 25	PN 25	PN 25						
Eddy current losses	Baseline	40% less than baseline	0 (100% less than baseline)						

Connections

Options by Request	Long Coupled	Closed Coupled	Heat Barrier
Pressure gauge	✓	✓	✓
Vacuum and pressure gauge	✓	✓	✓
Re-circulation	✓	✓	✓
Casing drain	✓	✓	✓
Secondary drain	✓	✓	✓
External flush	✓	✓	✓
Leak detector	✓	✓	✓
Canister temperature probe	✓	✓	
Oil filter/Vent/Breather	✓		
Bearing temperature probe	✓		
Oil drain	✓		
Oil cooler	✓		
Oil level sight glass	✓		
Constant level oiler	✓		
Vibration monitor	✓		

Back pullout options

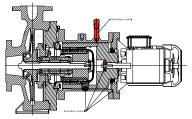
Contained back pullout if maintenance is required on the bearing bracket

- Entire wet end remains intact, so there is no contact with pumped liquid.
- Highest available safety for personnel and environment

Standard back pullout

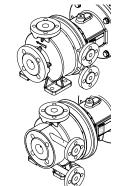
Volute casing remains connected to the piping

Contained back pullout

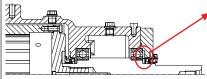

Secondary control per EN 15783

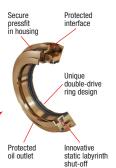
In the event of a failure of the containment shell, the bearing bracket when fitted with a secondary control seal can provide an additional level of protection for both workers and the environment.

Limitations of use:


- Max. operating temperature: 180°C (356°F)
- Max. pressure: 25 bar (363 psi)
- Max. operating speed: 3500 rpm (not for continuous operation)

Heating jacket for volute and/or casing cover


- Available for all sizes (except 025)
- The heatable designs are designed for a working pressure of 8 bar at 200°C (392°F) or 6 bar at 300°C (572°F).
- The test pressure is 16 bar at 20°C (68°F).
- Inlet and outlet flanges of the heating liquid per ISO 2633 PN 16, form C with DN 15 nominal diameter



Flowserve Bearing Gard™ as standard

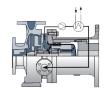
Oil isolation with Flowserve Bearing Gard labyrinth seal is standard for all bearing configurations.

Oil: L10h > 50 000 h Grease: L10h > 17 500 h

Heat barrier design

Available for all sizes up to 400°C (752°F) and PN 25. Insulation of heat barrier and lantern is not allowed.

- · Leakage free
- Maintenance free
- · Dead head operation


Flushing

Self-cleaning integral strainer as standard

Optional:

- Free flow filter
- External partial flow

